Seeding Year Yield and Forage Nutritive Value of Reduced Lignin and Conventional Alfalfa Varieties

A.M. Grev¹, M.S. Wells², K.L. Martinson¹, and C.C. Sheaffer²

¹Department of Animal Science and ²Department of Agronomy and Plant Genetics, UMN

- Alfalfa is widely used as a forage for herbivores due to its high nutrient content
- Grown as hay or haylage on over 3,000,000 acres in MN and WI (NASS, 2013)

UNIVERSITY OF MINNESOTA

Low- And Reduced-Lignin Alfalfas To Hit Market

Alforex and Forage Genetics International announce varieties

Oct 7, 2014

3

The Latest Breakthrough in Alfalfa Technology

Forage Genetics International introduces HarvXtra™ alfalfa, the industry's first quality-enhancing trait technology

In an effort to bring the industry's first quality-enhancing trait to market, Forage Genetics International (FGI) announces that the reduced lignin trait will be known as HarvXtra[™] alfalfa. This breakthrough technology is designed to ease the "yield-versus-quality" trade-off currently faced by alfalfa producers by improving forage quality over a longer period. This provides growers with greater flexibility and a wider cutting window to maximize yield potential.

Source: http://www.foragegenetics.com/fgi/media/PDFs/HarvXtraAlfalfa_News-Release.pdf http://hayandforage.com/alfalfa/low-and-reduced-lignin-alfalfas-hit-market

Lignin Biosynthetic Pathway

Source: Undersander et al., 2009

UNIVERSITY OF MINNESOTA

- Why do we want to reduce lignin levels?
 - Lignin is an indigestible component of plants
 - Binds to cellulose and hemicellulose and is a barrier to their digestibility (Morrison, 1979; Jung et al., 2012)
 - Cell wall digestibility negatively related to lignin concentration (Albrecht et al., 1987; Casler, 1987; Jung et al., 1997)

5

- Advantages of reduced lignin alfalfa varieties
 - Opportunity to increase the feeding value of alfalfa
 - Small changes in forage digestibility can impact animal performance (Casler and Vogel, 1999)
 - Provides increased management flexibility
 - Wider harvest window without loss of digestibility
 - Could allow for fewer harvest cuts per season
 - Less harvest costs and reduced field traffic

UNIVERSITY OF MINNESOTA

Source: Alforex Seeds

UNIVERSITY OF MINNESOTA

Objectives

- Compare new reduced lignin alfalfa against traditional alfalfa varieties in the seeding year
 - Forage yield
 - Forage nutritive value
 - Plant maturity
 - Stand persistence
- Hypothesis: Reduced lignin varieties harvested at the same time as traditional varieties will have comparable forage yields but will be higher in forage nutritive value

UNIVERSITY OF MINNESOTA

Materials and Methods

Cutting Treatments

- Standard
 - 60d + 30d + 30d
- Standard + Fall
 - 60d + 30d + 30d + Fall
- Standard + Delay
 - 60d + 37d + 37d
- Delay + Fall
 - 67d + 45d + Fall

Alfalfa Varieties

- 54R02
- WL355RR
- DKA43-22RR
- HarvXtra

Materials and Methods

- Planted at 4 locations
 - Becker: April 27, 2015
 - Rochester: April 30, 2015
 - Rosemount: April 28, 2015
 - Saint Paul: April 28, 2015
- 5 replicates at each location
- Plot size 6.1 x 0.91 m

(10)

Materials and Methods

- Measured plant height
- Hand harvested duplicate samples from each plot
 - Maturity (Kalu and Fick, 1981)
 - Forage nutritive value
- Mechanically harvested whole plot with Carter Harvester for yield
- Took stem counts

Statistical Analysis

- Data analyzed using Proc Mixed procedure of SAS
 - Statistical significance set at $P \le 0.05$
 - Random effects replicate
 - Fixed effects cutting treatment, variety
 - Locations analyzed separately
- Main effects of cutting treatment and variety reported separately
- Yield reported as seasonal cumulative yield
- Forage nutritive values are reported for the second harvest

UNIVERSITY OF MINNESOTA

Results – Yield

Yield by Variety

Results – Forage Nutritive Value

Saint Paul

Variety	NDF	ADF	СР	NDFD48		
	% DM					
54R02	34.85	32.09 ^a	23.79	42.18 ^b		
DKA43-22RR	34.52	30.93 ^{ab}	23.88	41.61 ^b		
HarvXtra	34.02	29.69 ^b	24.31	45.25 ^a		
WL355RR	34.21	30.77 ^{ab}	23.99	41.57 ^b		

Within columns, means without a common superscript differ ($P \le 0.05$)

UNIVERSITY OF MINNESOTA

Results – Forage Nutritive Value

Rochester

Variety	NDF	ADF	СР	NDFD48		
	% DM					
54R02	40.48	35.59 ^a	20.70	34.55 ^b		
DKA43-22RR	40.35	34.59 ^a	20.74	35.42 ^b		
HarvXtra	39.26	32.46 ^b	21.58	38.52 ^a		
WL355RR	39.78	34.57 ^a	20.96	35.19 ^b		

Within columns, means without a common superscript differ ($P \le 0.05$)

UNIVERSITY OF MINNESOTA

Discussion – Yield

- Yield by cutting treatment
 - Standard + Fall consistently higher yielding
 - 60d + 30d + 30d + Fall
 - Standard consistently lower yielding
 - 60d + 30d + 30d
 - Delayed cutting treatments have potential for equally high yields
- Yield by variety
 - Minimal differences between varieties
 - HarvXtra lower yielding at Rochester

UNIVERSITY OF MINNESOTA

Discussion – Forage Nutritive Value

- Forage nutritive value by variety
 - All varieties had similar NDF and CP content
 - Slight reduction in ADF concentration for HarvXtra
 - HarvXtra had increased NDFD48 over all traditional varieties

UNIVERSITY OF MINNESOTA

Discussion – Forage Nutritive Value

Study	Lignin Reduction	Fiber	Protein	Digestibility
Guo et al., 2001a	2.1 - 5.1%			
Guo et al., 2001b	12 - 29% (stem)	↓ ADF; NDF		1 NDFD
Marita et al., 2003	10 - 21% (stem)	↑ cellulose		
Reddy et al., 2005	3.6 - 4.8%	↓ADF; NDF		↑ IVDMD
Mertens and McCaslin, 2008	0.5 - 0.7%			1 dmd; Ndfd
Weakley et al., 2008				↑ NDFD
Undersander et al., 2009	3.7 - 12%			† NDFD
Getachew et al., 2011	13 - 24%	↓ADF; NDF	↑ср	† IVDMD
Li et al., 2015	Not significant	↓ NDF	Not significant	† NDFD

Conclusion

- Alfalfa yields improved with both 4-cut and delayed 3-cut systems
- Minimal differences between alfalfa varieties in yield
- All varieties had similar NDF and CP content
- Slight reduction in ADF concentration for HarvXtra
- HarvXtra had increased NDFD48 over traditional varieties

20

Future Research

- Analysis of other locations and variables
- Continuation of study in summer 2016
 - 30d, 35d, 40d, 45d
- Weekly sampling to develop new quality curves
 - Summer 2015
 - Spring and summer 2016
- Potential digestibility study

UNIVERSITY OF MINNESOTA

Thank You

This project was funded by the Minnesota Department of Agriculture

UNIVERSITY OF MINNESOTA

(22)